Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.268
1.
Phys Med ; 121: 103367, 2024 May.
Article En | MEDLINE | ID: mdl-38701625

PURPOSE: Diffusing alpha-emitters radiation therapy (DaRT) is a brachytherapy technique using α-particles to treat solid tumours. The high linear energy transfer (LET) and short range of α-particles make them good candidates for the targeted treatment of cancer. Treatment planning of DaRT requires a good understanding of the dose from α-particles and the other particles released in the 224Ra decay chain. METHODS: The Geant4 Monte Carlo toolkit has been used to simulate a DaRT seed to better understand the dose contribution from all particles and simulate the DNA damage due to this treatment. RESULTS: Close to the seed α-particles deliver the majority of dose, however at radial distances greater than 4 mm, the contribution of ß-particles is greater. The RBE has been estimated as a function of number of double strand breaks (DSBs) and complex DSBs. A maximum seed spacing of 5.5 mm and 6.5 mm was found to deliver at least 20 Gy RBE weighted dose between the seeds for RBEDSB and RBEcDSB respectively. CONCLUSIONS: The DNA damage changes with radial distance from the seed and has been found to become less complex with distance, which is potentially easier for the cell to repair. Close to the seed α-particles contribute the majority of dose, however the contribution from other particles cannot be neglected and may influence the choice of seed spacing.


Alpha Particles , DNA Damage , Monte Carlo Method , Alpha Particles/therapeutic use , Radiotherapy Dosage , Radiation Dosage , Relative Biological Effectiveness , Diffusion , Brachytherapy/methods , Humans , Linear Energy Transfer , Radiotherapy Planning, Computer-Assisted/methods , DNA Breaks, Double-Stranded/radiation effects
2.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719812

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Acetylglucosamine , DNA-Binding Proteins , Proliferating Cell Nuclear Antigen , Rad51 Recombinase , Recombinational DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylglucosamine/metabolism , Rad51 Recombinase/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Phosphorylation , DNA Replication , Ubiquitination , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , DNA/metabolism , HEK293 Cells , Ultraviolet Rays , Protein Binding , Glycosylation , Translesion DNA Synthesis
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731948

Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and ß coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/ß values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not ß. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological 'RadPhysBio' database for the prediction of irradiated cell survival (α and ß coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users.


Cell Survival , DNA Breaks, Double-Stranded , Linear Energy Transfer , Radiation, Ionizing , Radiobiology , Humans , Cell Survival/radiation effects , Radiobiology/methods , DNA Breaks, Double-Stranded/radiation effects , Databases, Factual , Monte Carlo Method
4.
Sci Rep ; 14(1): 10400, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710823

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


DNA Breaks, Double-Stranded , DNA Repair , Fibroblasts , Hydrocortisone , Humans , Fibroblasts/radiation effects , Fibroblasts/metabolism , DNA Breaks, Double-Stranded/radiation effects , Hydrocortisone/pharmacology , Radiation, Ionizing , Cells, Cultured , DNA Damage
5.
PLoS One ; 19(5): e0288578, 2024.
Article En | MEDLINE | ID: mdl-38739603

As a versatile genome editing tool, the CRISPR-Cas9 system induces DNA double-strand breaks at targeted sites to activate mainly two DNA repair pathways: HDR which allows precise editing via recombination with a homologous template DNA, and NHEJ which connects two ends of the broken DNA, which is often accompanied by random insertions and deletions. Therefore, how to enhance HDR while suppressing NHEJ is a key to successful applications that require precise genome editing. Histones are small proteins with a lot of basic amino acids that generate electrostatic affinity to DNA. Since H2A.X is involved in DNA repair processes, we fused H2A.X to Cas9 and found that this fusion protein could improve the HDR/NHEJ ratio by suppressing NHEJ. As various post-translational modifications of H2A.X play roles in the regulation of DNA repair, we also fused H2A.X mimicry variants to replicate these post-translational modifications including phosphorylation, methylation, and acetylation. However, none of them were effective to improve the HDR/NHEJ ratio. We further fused other histone variants to Cas9 and found that H2A.1 suppressed NHEJ better than H2A.X. Thus, the fusion of histone variants to Cas9 is a promising option to enhance precise genome editing.


CRISPR-Associated Protein 9 , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing , Histones , Histones/metabolism , Histones/genetics , Humans , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Protein Processing, Post-Translational , DNA Breaks, Double-Stranded , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , HEK293 Cells , Acetylation
7.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38696471

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


BRCA1 Protein , Cell Cycle Proteins , Mice, Knockout , Oocytes , Oocytes/metabolism , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Meiosis/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/deficiency , DNA Breaks, Double-Stranded , Chromosome Pairing/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , Genomic Instability
8.
Nucleic Acids Res ; 52(8): 4422-4439, 2024 May 08.
Article En | MEDLINE | ID: mdl-38567724

Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.


DNA End-Joining Repair , Immunoglobulin Class Switching , Transcription Factors , Immunoglobulin Class Switching/genetics , Animals , Mice , DNA End-Joining Repair/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Breaks, Double-Stranded , DNA Repair , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Recombination, Genetic , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Bromodomain Containing Proteins
9.
Med Phys ; 51(5): 3796-3805, 2024 May.
Article En | MEDLINE | ID: mdl-38588477

BACKGROUND: The Relative Biological Effectiveness (RBE) of kilovoltage photon beams has been previously investigated in vitro and in silico using analytical methods. The estimated values range from 1.03 to 1.82 depending on the methodology and beam energies examined. PURPOSE: The focus of this work was to independently estimate RBE values for a range of clinically used kilovoltage beams (70-200 kVp) while investigating the suitability of using TOPAS-nBio for this task. METHODS: Previously validated spectra of clinical beams were used to generate secondary electron spectra at several depths in a water tank phantom via TOPAS Monte Carlo (MC) simulations. Cell geometry was irradiated with the secondary electrons in TOPAS-nBio MC simulations. The deposited dose and the calculated number of DNA strand breaks were used to estimate RBE values. RESULTS: Monoenergetic secondary electron simulations revealed the highest direct and indirect double strand break yield at approximately 20 keV. The average RBE value for the kilovoltage beams was calculated to be 1.14. CONCLUSIONS: TOPAS-nBio was successfully used to estimate the RBE values for a range of clinical radiotherapy beams. The calculated value was in agreement with previous estimates, providing confidence in its clinical use in the future.


DNA Breaks, Double-Stranded , Monte Carlo Method , Relative Biological Effectiveness , DNA Breaks, Double-Stranded/radiation effects , Humans , Electrons , Radiotherapy Dosage , Photons , Computer Simulation , Phantoms, Imaging
10.
J Phys Chem B ; 128(17): 4053-4062, 2024 May 02.
Article En | MEDLINE | ID: mdl-38652830

Low-energy (<20 eV) electrons (LEEs) can resonantly interact with DNA to form transient anions (TAs) of fundamental units, inducing single-strand breaks (SSBs), and cluster damage, such as double-strand breaks (DSBs). Shape resonances, which arise from electron capture in a previously unfilled orbital, can induce only a SSB, whereas a single core-excited resonance (i.e., two electrons in excited orbitals of the field of a hole) has been shown experimentally to cause cluster lesions. Herein, we show from time-dependent density functional theory (TDDFT) that a core-excited resonance can produce a DSB, i.e., a single 5 eV electron can induce two close lesions in DNA. We considered the nucleotide with the G-C base pair (ds[5'-G-3']) as a model for electron localization in the DNA double helix and calculated the potential energy surfaces (PESs) of excited states of the ground-state TA of ds[5'-G-3'], which correspond to shape and core-excited resonances. The calculations show that shape TAs start at ca. 1 eV, while core-excited TAs occur only above 4 eV. The energy profile of each excited state and the corresponding PES are obtained by simultaneously stretching both C5'-O5' bonds of ds[5'-G-3']. From the nature of the PES, we find two dissociative (σ*) states localized on the PO4 groups at the C5' sites of ds[5'-G-3']. The first σ* state at 1 eV is due to a shape resonance, while the second σ* state is induced by a core-excited resonance at 5.4 eV. As the bond of the latter state stretches and arrives close to the dissociation limit, the added electron on C transfers to C5' phosphate, thus demonstrating the possibility of producing a DSB with only one electron of ca. 5 eV.


DNA Breaks, Double-Stranded , DNA , Density Functional Theory , Electrons , DNA/chemistry , DNA Breaks, Double-Stranded/radiation effects
11.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575732

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase , Mice, Inbred BALB C , Radiation Tolerance , p300-CBP Transcription Factors , Humans , Animals , DNA-Activated Protein Kinase/metabolism , Mice , p300-CBP Transcription Factors/metabolism , HeLa Cells , Mice, Nude , Female , Protein Processing, Post-Translational , Neoplasms/radiotherapy , Neoplasms/metabolism , Neoplasms/genetics , Xenograft Model Antitumor Assays
12.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38640894

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/metabolism , DNA Replication , DNA, Single-Stranded/genetics , DNA Helicases/genetics , DNA End-Joining Repair
13.
Pharmacol Res ; 203: 107165, 2024 May.
Article En | MEDLINE | ID: mdl-38561112

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Aminoquinolines , Doxorubicin , Endothelial Cells , Fibroblasts , Myocytes, Cardiac , Pyrimidines , cdc42 GTP-Binding Protein , rac1 GTP-Binding Protein , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/genetics , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , cdc42 GTP-Binding Protein/metabolism , Doxorubicin/toxicity , Doxorubicin/adverse effects , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/metabolism , Cardiotoxicity , Antibiotics, Antineoplastic/toxicity , Mice , Apoptosis/drug effects , Male , Humans , Mice, Inbred C57BL , DNA Breaks, Double-Stranded/drug effects , Neuropeptides/metabolism , DNA Damage/drug effects , Cells, Cultured
14.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664461

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
15.
Sci Rep ; 14(1): 8797, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627415

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Multiple Myeloma , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Repair , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , DNA Breaks, Double-Stranded , Genomic Instability , Transcription Factors
16.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580643

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Cell Cycle Proteins , DNA Breaks, Double-Stranded , Mice , Animals , Cell Cycle Proteins/metabolism , DNA , Meiosis/genetics , Synaptonemal Complex/metabolism , Recombination, Genetic , Homologous Recombination
17.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570537

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


DNA Breaks, Double-Stranded , Saccharomyces cerevisiae Proteins , Humans , Cell Cycle , Homologous Recombination , Cell Division , Endonucleases/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , DNA , DNA Repair , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664711

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Activating Transcription Factor 3 , Axons , DNA Breaks, Double-Stranded , Ganglia, Spinal , Mesenchymal Stem Cells , Mitochondria , Nerve Regeneration , Reactive Oxygen Species , Sciatic Nerve , Up-Regulation , Animals , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Axons/metabolism , Nerve Regeneration/genetics , Up-Regulation/genetics , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Male
19.
Cells ; 13(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38667311

Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair.


Actins , Protein Binding , Snail Family Transcription Factors , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Actins/metabolism , Humans , Cell Nucleus/metabolism , Histones/metabolism , Two-Hybrid System Techniques , DNA Repair , Doxorubicin/pharmacology , DNA Breaks, Double-Stranded , Ultraviolet Rays , Animals
20.
Nature ; 629(8011): 435-442, 2024 May.
Article En | MEDLINE | ID: mdl-38658751

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.


Werner Syndrome Helicase , Xenograft Model Antitumor Assays , Humans , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/chemistry , Animals , Mice , Allosteric Regulation/drug effects , Cell Line, Tumor , Female , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/enzymology , Proteomics , DNA Breaks, Double-Stranded , Microsatellite Instability , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Models, Molecular , Male , Cysteine/metabolism , Cysteine/chemistry
...